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Covariant—Projection Quadrilateral Elements
for the Analysis of Waveguides
with Sharp Edges

Ruth Miniowitz and J. P. Webb, Member, IEEE

Abstract -—Covariant-projection elements are shown to be a good way
of finding the dispersion characteristics of arbitrarily shaped wave-
guides. They have been demonstrated to produce no spurious modes,
and because only tangential continuity is imposed between elements,
either the electric field or the magnetic field may be solved for, in the
presence of both dielectric and magnetic materials. Further, waveguides
with sharp metal edges may be analyzed more efficiently than with
earlier methods. Results are presented for a rectangular waveguide half
loaded with dielectric, a double-ridged waveguide, a shielded microstrip
line, and coupled microstrip lines on a cylindrical substrate.

I. INTRODUCTION

INDING the modes of arbitrarily shaped waveguides

continues to be a challenging computational problem.
Despite the fact that it is two-dimensional, there is still no
completely general solution. That is not to say that there has
been no progress. Early on, scalar finite difference and finite
element methods were developed that are extremely good at
finding the TE and TM modes of hollow, convex, metal-
walled tubes [1]. However, when different dielectrics are
present, the solution involves at least two, coupled field
components; i.e., it is vector, rather than scalar. The earliest
methods for the vector problem produced spurious modes
[2], [3]. Since then, a number of techniques have been pro-
posed to overcome the problem of spurious modes, but each
has its drawback, e.g. loss of matrix sparsity [4], [5], a larger
number of field components 6], or the need to estimate,
either manually [7] or automatically [8], a suitable penalty
parameter.

_Nevertheless, with these new methods spurious modes are
not the obstacle they once wére. There remain, however, a
number of difficulties in waveguide analysis. One of them,
which this paper addresses, is the treatment of singularities.
Many waveguides have nonconvex boundaries; that is, they
contain sharp metal edges at which the electromagnetic
fields are singular. In the scalar case, it seems to be sufficient
to refine the mesh around such points, although more so-
phisticated approaches have been used [9], [10]. The vector
case is more difficult. Vector methods capable of avoiding
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spurious modes have all involved transverse field compo-
nents, which become infinite at sharp edges. With tradi-
tional, Lagrangian finite elements, refining near the edge
does not work. One answer is to add singular trial functions
[11]. This paper describes an alternative: the use of a differ-
ent type of finite element.

II. THE BOoUNDARY VALUE PROBLEM

The time-harmonic magnetic field H in a waveguide satis-
fies the following vector wave equation:

VXe \WWXH-kin,H=0 n
where k is the wavenumber and e, and w, are the relative
permittivity and permeability, respectively. The modes of the
waveguide are the eigensolutions (H, k) of (1) when H is
constrained to vary as exp(— j8z), z being the coordinate
along the waveguide axis and 8 the phase constant.

When k, is not zero, any solution of (1) also satisfies the
divergence equation

Veu,H=0 (2)
so it is not necessary to impose this equation separately.
However, (1) has an infinite number of static solutions: fields
for which k, is zero and which are consequently irrotational.
A few of the static solutions may be genuine, depending on
the waveguide, but most of them do not satisfy the diver-
gence equation and are therefore nonphysical.

In the numerical solution of (1), it is usually the case that
some of the computed modes will be exactly irrotational, i.e.,
exactly static. Because their eigenvalues are zero, they can
readily be detected and thrown away. However, in addition,
some computed modes may be inaccurate approximations to
static solutions. Because they are inaccurate, they do not
have zero eigenvalues. These are the spurious modes.

To avoid spurious modes, one approach is to reimpose the
divergence equation [7], [4]. Another approach is to use a
finite element for which all approximations to static modes
are exact. Simple, rectangular elements of this kind were
described by Hano [12], who later generalized them to trian-
gles [13]. Recently, curvilinear quadrilateral elements with
the same property were invented [14], and applied to wave-
guides at cutoff (8 =0). These are called covariant-projec-
tion elements.

II1. CovarianT-PrOJECTION ELEMENTS

A covariant-projection element is shown in Fig. 1. Its
geometry is the same as that of the curvilinear, isoparametric
version of the rectangular, nine-node, Lagrange element [17,
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Fig. 1.

A covariant-projection element.

p. 119 and sections 8.1 and 8.2]. Each element has a local
coordinate system &,n that is not necessarily orthogonal but
nevertheless can be used to define unitary vectors [15] a,, a,
at each point. Following the nomenciature of tensor calculus,
the projections of a vector field H on the unitary vectors are
called its covariant components. They are

H,=H-a; and H,=H-a,. 3)
At the edges of the element, these are proportional to the
tangential components of H. For example, if H, is zero on
the edge n=1, H is perpendicular to the edge. By using H,
and H, as the unknowus instead of H, and H, it is easy to
impose vector boundary conditions and tangential continuity
from one element to the next, even at curved boundaries.

After calculating the covariant components one can get
the full vector H easily by using the reciprocal vectors, aé
and a", defined as follows [15]:

4

where V' is a,(a, X a,) and a, is a unit vector in the z
direction. In terms of these vectors, the three-component H
is

1 1
af= I—/(a17 Xa,) and a"= —I;(az Xa;)

(%)

The factor of j is to account for the 90° phase difference
between transverse and axial components for lossless,
isotropic waveguides.

The three covariant components of V X H are

H=Ha*+ H,a"+ jH,a,.

[y oM oM, o, o
an 9z az & d€ an
(6)
Assuming a variation with z of exp(— jBz), these become
OH, . 0H, oH, 0H,
JW-HﬁH,, —JBH5~17§_ S am
(7

The trial functions for H, and H, are mixed-order; that is,
each trial function for H, is a polynomial of order 2 in 7, but
order 1 in ¢, and each trial function for H, is of order 2 in ¢,
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but order 1 in n (see the Appendix). H, is second-order in
cach variable. Because of this mixing of orders, for each
component of VX H both terms are polynomials of the
same orders in ¢ and 7. It has been stated—though a
rigorous proof is lacking—that such mixing of orders is
sufficient to prevent any inaccurate approximation of irrota-
tional fields, i.e., to eliminate spurious modes [14], [16].
Certainly no spurious modes were detected in any of the
problems described below. It is interesting to note that
although the earlier rectangular elements of Hano [12] are
also mixed-order, the subsequent triangular elements [13] are
not.

From (1), each exactly modeled irrotational field corre-
sponds to a frequency of zero and hence gives rise to one
zero eigenvalue of the algebraic problem. It is of some
interest to know how many such fields there are. Consider a
trial H over a mesh of elements, tangentially continuous and
satisfying magnetic-wall conditions where necessary. It can
be shown that such an H is irrotational if and only if it is the
gradient of a scalar function V, with these properties: (a) V'
can be exactly constructed on the same mesh by taking each
quadrilateral as a nine-node Lagrange element and assigning
nodal values appropriately; and (b) V' is zero on the magnetic
walls. The number of irrotational fields is the number of
linearly independent scalar functions of this kind, i.e., the
total number of nodes in the mesh of nine-node quadrilater-
als, minus the number of nodes on the magnetic walls. This
equals the number of free H, values, a result that is also
true for Hano’s elements [12), [13]. (The above argument
holds for B> 0. When B is zero, some of the irrotational
fields might be physical, e.g. the fundamental mode of mi-
crostrip at cutoff. It is possible to show, however, that the
number of nonphysical irrotational fields equals the number
of free H, values in all cases.)

Covariant-projection ¢lements have the additional advan-
tage that they are able to handle sharp edges. Consider two
smooth, perfectly conducting surfaces meeting at a sharp
edge. The magnetic field must be tangential to each surface
all the way up to the edge; i.e., the direction of the field must
change discontinously at the edge. This discontinuity cannot
be modeled by traditional, C° elements, in which all compo-
nents of the field are continous. With covariant-projection
elements, however, only the tangential part of the magnetic
field is continuous from element to element; the normal part
is allowed to be discontinous. It turns out that this disconti-
nuity is sufficient to allow accurate computation of eigenval-
ues, even without singular trial functions. The polynomial
basis functions do not become infinite at the edge as they
should, so the field close to the edge will necessarily be
inaccurate. However, the eigenvalues depend on the field
over the whole domain, in an integral sense, and they seem
relatively insensitive to local errors at the edge, provided the
correct discontinuity is allowed for. Of course, refining the
mesh near the edge improves the accuracy, and it may well
be that singular trial functions could still be used with
advantage, but there is none of the pathological behavior
associated with C? elements.

IV. CompPUTER PrROGRAM

A FORTRAN computer program has been written using
the covariant-projection elements described above. The pro-
gram solves (1) by the standard variational method and
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Fig. 2. Cross-section of a rectangular waveguide half loaded with di-
electric. The broken line shows the plane of symmetry. e, = 1.5.

functional (for example, see [12, eq. (11)]). Boundary condi-
tions on the tangential part of the field, as well as tangential
continuity between elements, were imposed. As usual, the
variational principle reduces to a generalized eigenvalue
problem of the form

([S1-KT]{H} =0 (8)
where [S] and [T] are N X N global matrices after all
boundary and continuity conditions are imposed, and {H} is
an N vector whose components are free values of H,, H,,
and H,. The matrices [S] and [T'] depend on B, which is an
input to the program. The integration required to calculate
[S) and [T] was carried out numerically using the nine-point
Gauss quadrature method [17, p. 174].

The formulation for the electric field is very similar to that
given above for the magnetic field, and the program can
solve for cither. Since only tangential continuity is enforced,
there is no difficulty caused by the discontinuity of the
normal component of the electric field at dielectric inter-
faces.

Although the matrices [S] and [T] are sparse, the solu-
tions given below were all obtained with an off-the-shelf,
dense-matrix alogrithm—reduction to tridiagonal form fol-
lowed by bisection. The program ran on a MicroVax II under
Ultrix. A problem with N = 400 took about one hour of CPU
time,

V. REsSuLTS

Fig. 2 shows a rectangular waveguide half loaded with
dielectric. We analyzed half of the structure, with the plane
of symmetry taken as a perfect magnetic conductor. The
problem was solved with the H formulation. In addition to
the mixed-order element described above, a full-order ele-
ment was tried, i.e., a quadrilateral, curvilinear element in
which all three covariant components are interpolated with
quadratic trial functions in both ¢ and 7. Table I shows a
comparison of results for the first three true modes. The
exact results were computed from transcendental equations
found in [18]. The full-order element gave good results for
the three modes but also introduced a large number of
spurious modes. It is clear that, for the quadrilateral element
to work, mixed-order interpolation is necessary.

Consider next the double-ridged waveguide shown in Fig.
3. One quarter of the structure, with boundary conditions for
the odd modes, was analyzed at cutoff (8 = (). We tried both
E and H formulations and several refinements of the simple
three-element mesh shown in Fig. 3. Table II demonstrates

TABLE 1
COMPARISON OF WAVENUMBERS FOR THE PARTIALLY LOADED
WAaVEGUIDE OF Fic. 2 For Ba=5.0
(AsTERISK DENOTES SPURIOUS MODE)

kya
Mode Mixed Order Full Order
Number Exact HN =56 HN=174
*4.212
*4.212
*4.279
1 4.405 4.406 4.406
2 4,693 4,708 4,708
*4.991
*4,991
3 5.136 5.211 " 5211

Fig. 3. Cross section of a double-ridged waveguide. The broken lines
show the planes of symmetry. W =127 mm, H =10.16 mm, w = 2.54
mm, and 4 =2.794 mm.

how well the frequencies of the first three modes converge as
the number of elements is increased. These modes are TE,
and can be compared with the result of a scalar analysis
using fifth-degree, C!-continuous finite elements [10]. Table
II also shows results obtained with two non-finite-element
methods.

In addition, the double-ridged waveguide was analyzed at
several nonzero values of B. Interestingly, the results agreed
exactly with the formula

=B+ k2 ©)

when k_ was taken as the value of k, given by the program
at B =0. In other words, for homogeneous waveguides, the
method seems to get the form of the dispersion curve exactly
right.

The shielded microstrip line is an important problem
which has sharp edges, and is one for which a scalar analysis
is inadequate. We analyzed one half of the line shown inset
in Fig. 4, with a magnetic wall on the plane of symmetry.
Again, both E and H formulations were tried, and the initial
mesh was refined to check convergence. Fig. 4 gives disper-
sion curves for the first three modes, using the H formula-
tion and the finest mesh (32 elements). The solid line for the
first two modes is obtained from a vector finite-element
analysis using singular trial functions [11]. The broken lines
represent non-finite-element results: the first mode is from
{19]; and the other two are from [20). Fig. 4' shows good
agreement between the various methods. Table III demon-
strates the convergence of the dominant mode with increas-
ing mesh refinement for two values of B. If we accept that



504 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 3, MARCH 1991

TABLE 1I
CONVERGENCE OF THE CUTOFF WAVENUMBERS K, (rad /mm) wiTH
IncreAsSING NUMBERS OF ELEMENTS FOR THE DouBLE-RIDGED
WAVEGUIDE SHOWN IN FIG. 3

TABLE III
CONVERGENCE OF k¢ (rad /mm) witH INCREASING NUMBERS OF
ELEMENTS FOR THE DOMINANT MODE OF THE MICROSTRIP
SHowN IN FiG. 4

N Mode 1 Mode 2 Mode 3 N B =05 rad/mm B =2rad/mm
3 H 48 0.1462 0.6427 0.7312 4 H 59 0.1862 0.6958
elements E 24 0.1402 0.6221 0.6748 elements g 38 0.3854 0.7699
12 H 172 0.1444 0.6319 0.7014 8 H 119 0.1847 0.6926
elements E 120 0.1432 0.6214 0.6735 elements g 71 0.2029 0.7135
48 H 624 0.1440 0.6200 0.6723 16 H 215 0.1937 0.7090
elements E 528 0.1437 0.6197 0.6721 elements E 167 0.1941 0.7083
TE scalar C! [10] 0.1440 0.6192 0.6713 3 H 431 0.1934 0.7083
Montgf)mery [22] 0.1437 0.6190 0.6712 elements E 335 0.1953 0.7110
Utsumi [23] 0.1438 0.6215 0.6707
Webb[11] H 450 0.2005 0.7209
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Fig. 4. Dispersion curves for the first three modes of a shielded 0 1 2 3 5
microstrip transmission line. The broken line in the inset figure shows kb
o)

the plane of symmetry. L =127 mm, W=127 mm, A=1.27 mm,
H =127 mm, and ¢, = 8.875.

the 32-element results are nearest to the true values, then
the table shows that covariant-projection elements with about
200 degrees of freedom can give better accuracy than the
singular-trial-function method [11] with 450 degrees of free-
dom.

The last example (Fig. 5) is of coupled microstrip lines on
a cylindrical substrate [21]. The problem solved in [21] is
unbounded, but to solve it with the present method we
introduced an electric wall around the problem, at a distance
from the strips that was ten times the substrate thickness.
Half of the structure was analyzed, with the plane of symme-
try taken as either an electric wall or a magnetic wall,
depending on whether the odd or the even mode was re-
quired. Fifty elements were used. Their curvilinear nature
made it easy to get a good modeling of the circular bound-
aries and interfaces. Fig. 5 shows the effective dielectric
constant, (8 / k,)?, obtained with E and H formulations and
a comparison with results in [21] (solid line).

VI. CONCLUSIONS

Covariant-projection elements are effective in calculating
dispersion curves for arbitrarily shaped waveguides. No spu-
rious modes have been detected. As shown by the microstrip

Fig. 5. Dispersion curves for the odd and even modes of coupled
microstrip lines on a cylindrical substrate. The broken line in the inset
figure shows the plane of symmetry. a/b=09, ¢/h=10, s/h=1,
w/h=1, where h=>b—a. €, =9.6. Since the effective dielectric con-
stant is undefined at k,=0, the squares and triangles at k,b=0
actually have a very small, nonzero frequency, 0 < kob < 1.

example, the method is able to analyze geometries with
sharp edges with fewer degrees of freedom than an earlier
technique using singular trial functions.

The matrices generated are sparse, and the number of
zero eigenvalues produced is predictable. It therefore seems
likely that the algebraic problem can be solved by sparse
techniques, which would make the method applicable to
even more complicated geometries at a modest computa-
tional cost.

APPENDIX

In each element, the magnetic field is interpolated as
follows:

6 6
H=Y H,X,(€,m)af+ Y H,Y(¢,m)a"
= .

i=1

=

9
+j Y H,Z,(¢,m)a,
i=1
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where X, Y, and Z; are the following trial functions:

1=‘12(§)61-1(7I) Xy=1(&)an)
Xy == 1(n)gx(n) Xs=1,(£)ax(n)
Xy=~1L(£)qs(n) Xo=1(&)qs(n)

Yy =—qy(£)5(n) Y, =q,(§)1(n)
Y, == q,(&)15(n) Ys=a,(&)1i(n)

Y= —q3(£)1(n) Yo =a3(£)I(n)

Zi=aqi()ai(n)  Zy=qx(E)aln)  Z;=q(&)an)
=q5(£)q(n) 252612(54)612(77) CZg=4q,(£)ax(n)
Zy=q3(£)q5(n) Zs=q5(£)qs(n) Zg=611(§)613(77);

The quantities /4, {5, g4, g5, and g5 ‘are Lagrange polynomi-
als of degree 1 and 2:

1 1
W) =3(=5)  b(s)=5(1+5)

1 1
0i()=55G=1) @) =(1=8)  ax(s)=35(s+1).
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