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Covariant-Projection Quadrilateral Elements
for the Analysis of Waveguides

with Sharp Edges
Ruth Miniowitz and J. P. Webb, Member, IEEE

Abstruct—Covariant.projection elements are shown to be a good way

of finding the dispersion eharaeteristies of arbitrarily shaped wave-
guides. They have been demonstrated to produce no spurious modes,
and because only tangential continuity is imposed betmeen elements,
either the electric field or the magnetie field may be solved for, in the
presence of both dielectric and magnetic materials. Further, waveguides

with sharp metal edges may be analyzed more eftlciently than with
earlier methods. Results are presented for a rectangular wavegoide half

loaded with dielectric, a double-ridged wavegoide. a shielded microstrip

line, and coupled microstrip lines on a cylindrical substrate.

I. INTRODUCTION

F INDING the modes of arbitrarily shaped waveguides
continues to be a challenging computational problem.

Despite the fact that it is two-dimensional, there is still no
completely general solution. That is not to say that there has
been no progress. Early on, scalar finite difference and finite
element methods were developed that are extremely good at
finding the TE and TM modes of hollow, convex, metal-
walled tubes [1]. However, when different dielectrics are
present, the solution involves at least two, coupled field
components; i.e., it is vector, rather than scalar. The earliest
methods for the vector problem produced spurious modes
[2], [3]. Since then, a number of techniques have been pro-
posed to overcome the problem of spurious modes, but each
has its drawback, e.g. loss of matrix sparsity [4], [5], a larger
number of field components [6], or the need to estimate,
either manually [7] or automatically [8], a suitable penalty
parameter.

,Nevertheless, with these new methods spurious modes are
not the obstacle they once were, There remain, however, a
number of difficulties in waveguide analysis. One of them,
which this paper addresses, is the treatment of singularities.
Many waveguides have nonconvex boundaries; that is, they
contain sharp metal edges at which the electromagnetic
fields are singular. In the scalar case, it seems to be sufficient
to refine the mesh around such points, although more so-
phisticated approaches have been used [9], [10]. The vector
case is more difficult. Vector methods capable of avoiding
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spurious modes have all involved transverse field compo-
nents, which become infinite at sharp edges. With tradi-
tional, Lagrangian finite elements, refining near the edge
does not work. One answer is to add singular trial functions
[11]. This paper describes an alternative: the use of a differ-
ent type of finite element.

II. THE BOUNDARY VALUE PROBLEM

The time-harmonic magnetic field H in a waveguide satis-
fies the following vector wave equation:

Vx~~~VXH–k&,H=O (1)

where k. is the wavenumber and ●, and I.Lr are the relative
permittivity and permeability, respectively. The modes of the
waveguide are the eigensolutions (H, ko) of (1) when H is
constrained to vary as exp ( – j/3z), z being the coordinate
along the waveguide axis and ~ the phase constant.

When kO is not zero, ‘any solution of (1) also satisfies the
divergence equation

V./.L,H=O (2)

so it is not necessary to impose this equation separately.
However, (1) has an infinite number of static solutions: fields
for which k. is zero and which are consequently irrotational.
A few of the static solutions may be genuine, depending on
the waveguide, but most of them do not satisfy the diver-
gence equation and are therefore nonphysical.

In the numerical solution of (l), it is usually the case that
some of the computed modes will be exactly irrotational, i.e.,
exactly static. Because their eigenvalues are zero, they can
readily be detected and thrown away. However, in addition,
some computed modes may be inaccurate approximations to
static solutions. Because they are inaccurate, they do not
have zero eigenvalues. These are the spurious modes.

To avoid spurious modes, one approach is to reimpose the
divergence equation [7], [4], Another approach is to use a
finite element for which all approximations to static modes
are exact. Simple, rectangular elements of this kind were
described by Hano [12], who later generalized them to trian-’
gles [13], Recently, curvilinear quadrilateral elements with
the same property were invented [14], and applied to wave-
guides at cutoff (/3 = O). These are called covariant-projec-
tion elements.

111. COVARIANT-PROJECTION ELEMENTS

A covariant-projection element is shown in Fig, 1. Its
geometry is the same as that of the curvilinear, isoparametric
version of the rectangular, nine-node, Lagrange element [17,
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Fig. 1. A covariant-projection element.

p. 119 and sections 8.1 and 8.2]. Each element has a local
coordinate system f, q that is not necessarily orthogonal but
nevertheless can be used to define unitary vectors [15] ae, aq

at each point. Following the nomenclature of tensor calculus,
the projections of a vector field H on the unitary vectors are
called its couariant components. They are

Hc=H”aL and Hq=H”aq. (3)

At the edges of the element, these are proportional to the
tangential components of H. For example, if Hf is zero on
the edge q = 1, H is perpendicular to the edge. By using H&
and Hq as the unknowns instead of HX and HY, it is easy to
impose vector boundary conditions and tangential continuity
from one element to the next, even at curved boundaries.

After calculating the covariant components one can get
the fuIl vector H easily by using the reciprocal vectors, ac

and a~, defined as follows [15]:

1
af=—(aq Xaz

v
) and a“ = +(a. X a~) (4)

where V is at “(aq X a=) and a= is a unit vector in the z
direction. In terms of these vectors, the three-component H
is

H= Hta~+ HTa~+ jHzaz. (5)

The factor of j is to account for the 90” phase difference
between transverse and axial components for lossless,
isotropic waveguides.

The three covariant components of V x H are

8HZ 8HV dHt .~ i?Hq L3H6
.— —.

j~ az 8Z J at ~“~”

(6)

Assuming a variation with z of exp ( – j~z), these become

(7)

The trial functions for Hg and Hq are mixed-order; that is,
each trial function for H$ is a polynomial of order 2 in q, but
order 1 in f, and each trial function for Hq is of order 2 in f,

but order 1 in q (see the Appendix). HZ is second-order in
each variable. Because of this mixing of orders, for each
component of V X H both terms are polynomials of the
same orders in < and q. It has been stated—though a
rigorous proof is lacking—that such mixing of orders is
sufficient to prevent any inaccurate approximation of irrota-
tional fields, i.e., to eliminate spurious modes [14], [16].
Certainly no spurious modes were detected in any of the
problems described below. It is interesting to note that
although the earlier rectangular elements of Hano [12] are
also mixed-order, the subsequent triangular elements [13] are
not,

From (l), each exactly modeled irrotational field corre-
sponds to a frequency of zero and hence gives rise to one
zero eigenvalue of the algebraic problem. It is of some
interest to know how many such fields there are. Consider a
trial H over a mesh of elements, tangentially continuous and
satisfying magnetic-wall conditions where necessary. It can
be shown that such an H is irrotational if and only if it is the
gradient of a scalar function V, with these properties: (a) V
can be exactly constructed on the same mesh by taking each
quadrilateral as a nine-node Lagrange element and assigning
nodal values appropriately; and (b) V is zero on the magnetic
walls. The number of irrotational fields is the number of
linearly independent scalar functions of this kind, i.e., the
total number of nodes in the mesh of nine-node quadrilater-
als, minus the number of nodes on the magnetic walls. This
equals the number of free Hz values, a result that is also
true for Hano’s elements [12], [13]. (The above argument
holds for ~ >0. When ~ is zero, some of the irrotational
fields might be physical, e.g. the fundamental mode of mi-
crostrip at cutoff. It is possible to show, however, that the
number of nonphysical irrotational fields equals the number
of free Hz values in all cases.)

Covariant-projection elements have the additional advan-
tage that they are able to handle sharp edges. Consider two
smooth, perfectly conducting surfaces meeting at a sharp
edge. The magnetic field must be tangential to each surface
all the way up to the edge; i.e., the direction of the field must
change discontinuously at the edge. This discontinuity cannot
be modeled by traditional, Co elements, in which all compo-
nents of the field are continous. With covariant-projection
elements, however, only the tangential part of the magnetic
field is continuous from element to element; the normal part
is allowed to be discontinuous, It turns out that this disconti-
nuity is sufficient to allow accurate computation of eigenval-
ues, even without singular trial functions. The polynomial
basis functions do not become infinite at the edge as they
should, so the field close to the edge will necessarily be
inaccurate. However, the eigenvalues depend on the field
over the whole domain, in an integral sense, and they seem
relatively insensitive to local errors at the edge, provided the
correct discontinuity is allowed for, Of course, refining the
mesh near the edge improves the accuracy, and it may well
be that singular trial functions could still be used with
advantage, but there is none of the pathological behavior
associated with Co elements.

IV. COMPUTER PROGRAM

A FORTRAN computer program has been written using
the covariant-projection elements described above, The pro-
gram solves (1) by the standard variational method and
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Fig. 2. Cross-section of a rectangular waveguide half loaded with di-
electric. The broken line shows the plane of symmetry. c, = 1.5.

functional (for example, see [12, eq. (11)]). Boundary condi-
tions on the tangential part of the field, as well as tangential
continuity between elements, were imposed. As usual, the
variational principle reduces to a generalized eigenvalue
problem of the form

([~1- %[T]){H} = o (8)

where [s] and [T] are N x N global matrices after all
boundary and continuity conditions are imposed, and {H} is
an N vector whose components are free values of H&, Hq,

and Hz. The matrices [S] and [T] depend on ~, which is an
input to the program. The integration required to calculate
[s] and [T] was carried out numerically using the nine-point
Gauss quadrature method [17, p. 174].

The formulation for the electric field is very similar to that
given above for the magnetic field, and the program can
solve for either. Since only tangential continuity is enforced,
there is no difficulty caused by the discontinuity of the
normal component of the electric field at dielectric inter-
faces.

Although the matrices [S] and [T] are sparse, the solu-
tions given below were all obtained with an off-the-shelf,
dense-matrix alogrithm—reduction to tridiagonal form fol-
lowed by bisection. The program ran on a MicroVax II under
Ultrix. A problem with N= 400 took about one hour of CPU
time.

V. RESULTS

Fig. 2 shows a rectangular waveguide half loaded with
dielectric. We analyzed half of the structure, with the plane
of symmetry taken as a perfect magnetic conductor. The
problem was solved with the H formulation. In addition to
the mixed-order element described above, a full-order ele-
ment was tried, i.e., a quadrilateral, curvilinear element in
which all three covariant components are interpolated with
quadratic trial functions in both & and q, Table I shows a
comparison of results for the first three true modes. The
exact results were computed from transcendental equations
found in [18]. The full-order element gave good results for
the three modes but also introduced a large number of
spurious modes.” It is clear that, for the quadrilateral element
to work, mixed-order interpolation is necessary.

Consider next the double-ridged waveguide shown in Fig.
3. One quarter of the structure, with boundary conditions for
the odd modes, was analyzed at cutoff (~ = O). We tried both
E and H formulations and several refinements of the simple
three-element mesh shown in Fig, 3. Table II demonstrates

TABLE I
COMPARISON OF WAVENUMBERS FOR THE PARTIALLY LOADED

WAVEGUIDE OF FIG. 2 FOR J?a= 5.0
(ASTERISK DENOTES SPURIOUS MODE)

kOa

Mode Mixed Order Full Order -
Number Exact HN=56 HN=74

*4.212
*4.212
*4.279

1 4.405 4.406 4.406
2 4.693 4.708 4.708

*4.991
*4.991

3 5.136 5.211 5.211

<
w

),

MIh’-——$–+---- H

I

Fig. 3. Cross section of a double-ridged waveguide. The broken lines
show the planes of symmetry. W = 12.7 mm, H = 10.16 mm, w = 2.54
mm, and k = 2.794 mm.

how well the frequencies of the first three modes converge as
the number of elements is increased, These modes are TE,
and can be compared with the result of a scalar analysis
using fifth-degree, C l-cont~nuous finite elements [10]. Table
II also shows results obtained with two non-finite-element
methods.

In addition, the double-ridged waveguide was analyzed at
several nonzero values of /3. Interestingly, the results agreed
exactly with the formula

(9)

when kC was taken as the value of kO given by the program
at ~ = O. In other words, for homogeneous waveguides, the
method seems to get the form of the dispersion curve exactly
right.

The shielded microstrip line is an important problem
which has sharp edges, and is one for which a scalar analysis
is inadequate. We analyzed one half of the line shown inset
in Fig, 4, with a magnetic wall on the plane of symmetry.
Again, both E and H formulations were tried, and the initial
mesh was refined to check convergence. Fig. 4 gives disper-
sion curves for the first three modes, using the H formula-
tion and the finest mesh (32 elements). The solid line for the
first two modes is obtained from a vector finite-element
analysis using singular trial functions [11]. The broken lines
represent non-finite-element results: the first mode is from
[19]; and the other tivo are from [20]. Fig. 4’ shows good
agreement between the various methods. Table III dernop-
strates the convergence of the dominant mode with incrt@-
ing mesh refinement ‘for two values of @ If we accept that
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TABLE II TAf3LE III
CONVERGENCE OF THE CUTOFF WAVENUMBFiRS k. (rad/mm) WITH CONWSRGENCEOF k“ (rad/mm) WITH INCREASING NUMBERS OF

INCREASING NUMBERS OF ELEMENTS FOR THE D&BLE-RIDGED ‘ ELEMENTS FOR ~“E DOMINANT MODE OF THE MICROSTRIP

WAVEGUIDE SHOWN IN FIG. 3

N Mode 1 Mode 2 Mode 3

3 H 48 0.1462 0.6427 0.7312
elements E 24 0.1402 0.6221 0.6748

12 H 172 0.1444 0.6319 0.7014
elements E 120 0.1432 0.6214 0.6735

4
elements

8
elements

48 H 624 0.1440 0.6200 0.6723
elements E 528 0.1437 0.6197 0.6721

TE scalar Cl [10] 0.1440 0.6192 0.6713
Montgomery [22] 0.1437 0.6190 0.6712
Utsumi [23] 0.1438 0.6215 0.6707

0

\

f.4-

k /{)

0+$
-4;0+’ U2!_Lul

0.0 0.5 1.0 1.’5 2,0

~ (rads/n-m)

Fig. 4. Dispersion curves for the first three modes of a shielded
microstrip transmission line. The broken line in the inset figure shows
the plane of symmetry. L = 12.7 mm, W = 1.27 mm, h = 1.27 mm,
H = 12.7 mm, and F,= 8.875.

the 32-element results are nearest to the true values, then
the table shows that covariant-projection elements with about
200 degrees of freedom can give better accuracy than the
singular-trial-function method [11] with 450 degrees of free-
dom.

The last example (Fig. 5) is of coupled microstrip lines on
a cylindrical substrate [21]. The problem solved in [21] is
unbounded, but to solve it with the present method we
introduced an electric wall around the problem, at a distance
from the strips that was ten times the substrate thickness.
Half of the structure was analyzed, with the plane of symmet-
ry taken as either an electric wall or a magnetic wall,
depending on whether the odd or the even mode was re-
quired. Fifty elements were used. Their curvilinear nature
made it easy to get a good modeling of the circular bound-
aries and interfaces. Fig. 5 shows the effective dielectric
constant, (~\ kO)2, obtained with E and H formulations and
a comparison with results in [21] (solid line),

VI. CONCLUSIONS

Covariant-projection elements are effective in calculating
dispersion curves for arbitrarily shaped waveguides. No spu-
rious modes have been detected. As shown by the microstrip

SHOWN IN FIG. 4

N B = 0.5 rad\mm B = 2 rad/mm

16
elements

32
elements

Webb [11]

H 59 0.1862 0.6958

E 38 0.3854 0.7699

H 119 0.1847 0.6926

E 71 0.2029 0.7135

H 215 0.1937 0.7090

E 167 0.1941 0.7083

H 431 0.1934 0.7083

E 335 0.1953 0.7110

H 450 0.2005 0.7209

5: 1 1 I 1

01234

kob

Fig. 5. Dispersion curves for the odd and even modes of coupled
microstrip lines on a cylindrical substrate, The broken line in the inset
figure shows the plane of symmetry. a/b= 0.9, c/h= 10, s/h= 1,
w/h = 1, where h = b – a. ●r = 9.6. Since the effective dielectric con-
stant is undefined at kO = O, the squares and triangles at /cOb= O
actually have a ve~ small, nonzero frequency, O < kOb<1.

example, the method is able to analyze geometries with
sharp edges with fewer degrees of freedom than an earlier
technique using singular trial functions.

The matrices generated are sparse, and the number of
zero eigenvalues produced is predictable. It therefore seems
likely that the algebraic problem can be solved by sparse
techniques, which would make the method applicable to
even more complicated geometries at a modest computa-
tional cost.

APPENDIX

In each element, the magnetic field is interpolated as
follows:

6

H= ~ ~gixj(f,~)af+ ~ ~qi~(f,~)aq

i=l i=l
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M. Hano, “Finite-element analysis of dielectric-loaded wave-
~uides.” IEEE Trans. Microwave Theorv Tech.. vol. MTT-32.

where ~i, Yj, and Zj are the following trial functions:

xl=–12(f)q1(q) x4=11( <)q1(q)

X2, = – 12(q) q~(q) x5=11( f)q2(q)

x3=–12(g)q3(q) x6=11( g)qJ?_/)

Y1=–q1(&)12(q) Ij=ql(&)ll(q)

Y2=–q2(f)12(q) Y5=q2(<)11(q)

Y3= – q3(f)12(q) Y6=q3(f)11(q)

z1=q3($)q,(q) z4=q2(<)q1(q) -z7=91(&)!zl(~)

‘2=~3($)~2(~) -z5= @( ’5’)92(~) -%= 91(&) !72(~)

z3=q3(g)@(q) z6=q2(<)43(?7) -z9=!ll(t)~3(77).

The quantities 11, 12, ql, qz, and q~ are Lagrange polynomi-
als of degree 1 and 2:

ll(s)=:(l–s) /2(s) =;(1+s)
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